
University of Oxford

Part C Project Report

Rewriting Conjunctive Queries
Under Guarded TGDs

Ryosuke Kondo

Supervised by
Prof. Michael Benedikt

Trinity Term 2023

Abstract

The class of Guarded Tuple-Generating Dependencies (GTGDs) is an expressive
class of first-order formulae for which conjunctive query answering is decidable.
Even though the problem is 2Exptime-complete in general, it has been shown
that, by essentially performing enough pre-computation, one can rewrite GTGD
conjunctive query answering problem to a Datalog query, which can be run in
time polynomial to the size of the input database. Nevertheless, no work has
implemented the rewriting algorithm for general conjunctive queries under GT-
GDs. By utilising the recent implementation for rewriting GTGDs over atomic
queries, we revisit the theory of chases, derive a rewriting algorithm for general
queries and discuss its implementation and further optimisations.

2

3

Contents

1 Introduction 6
1.1 Background . 6
1.2 Contribution of This Work . 7
1.3 Outline of This Report . 7

2 Preliminaries 8
2.1 Formulas . 8
2.2 Database Instances and Homomorphisms 9
2.3 Datalog Saturation . 9
2.4 Problem Formulation . 11

3 Characterising Query Entailment under GTGDs 12
3.1 Tree-Like Chase Proofs . 12
3.2 Shortcutting Chase Trees . 15
3.3 Query Satisfaction in Shortcutting Chase Trees 18

4 Deriving a Rewriting 27
4.1 The Subquery Entailment Problem 28

4.1.1 Local Instances . 28
4.1.2 Partially Substituted Subqueries 30
4.1.3 Formalising the Subquery Entailment Problem 32

4.2 The Naive Subquery Entailment Enumeration 33
4.3 A Rewriting Algorithm . 33

4.3.1 From a Subquery Entailment to a Datalog Rule 33
4.3.2 Glueing Subgoals . 36
4.3.3 Putting The Pieces Together 37

4.4 Optimising the Subquery Entailment Enumeration 37
4.4.1 Dynamic Programming . 39
4.4.2 DFS Optimisation . 41
4.4.3 Instance Normalisation . 42

5 Implementation and Testing 44
5.1 Architecture . 44
5.2 Correctness Tests . 44
5.3 Example Runs . 45

4

6 Conclusions and Further Discussion 47
6.1 Limitations and Future Work . 47

5

Chapter 1

Introduction

1.1 Background

Query answering under data integration rules is one of the central problems in
knowledge representation and reasoning. To give an idea of the problem, consider
the following relational database, a collection of tuples in relations.

D = {U(a), R(b, c), S(d, d)}

Suppose that, as domain knowledge, we know that

• for any X, if U(X) is a relation then there should be some value Z with
R(X,Z), and

• for any X, Y , R(X, Y) should imply S(X,X).

The database D is incomplete, as it does not satisfy the abovementioned
constraints. Nevertheless, we could still ask a question of the form: “If the
database had been fixed by adding some facts not yet recorded by the information
system at the moment, what values v would satisfy S(v, v)?” In the example
above, we can say that all of a, b, and d become answers to this question regardless
of how we fix D.

This type of problem typically arises when data sources are distributed, such
as in the Semantic Web, and the querying party needs to integrate the data to
make sense of possibly incomplete data.

A class of logical formulas known as Tuple Generating Dependencies (TGDs),
which are of the form ∀x⃗.β → ∃y⃗. η, could describe data integrity rules. In the
example above, the two rules would be written as ∀X. U(X) → ∃Z. R(X,Z)
and ∀X,Y. R(X, Y)→ S(X,X).

Unfortunately, query answering under general TGDs is undecidable [3]. A
line of work, including [6], identified Guarded TGDs (GTGDs) as a syntactically
restricted subclass of TGDs that leaves query-answering decidable yet much more
expressive than description logics used for ontological reasoning.

The first result that opened up the possibility towards practical query an-
swering is shown in [2], which states that we can compute a Datalog rewriting of

6

(frontier) guarded TGDs and a conjunctive query. Roughly speaking, a Datalog
rewriting is a set of existential-free TGDs that gives the same answer as the
original query. It is well-known that a fixed Datalog program can be run in a
polynomial time on a database.

More recently, [4] implemented the system for answering atomic queries over
GTGDs. Their algorithm takes the GTGD rule set Σ as an input and outputs a
Datalog program that derives all tuples which could have been derived using Σ.
We call this program an atomic rewriting of Σ to distinguish from rewritings of
general conjunctive queries.

To our knowledge, however, no work has yet implemented a query-answering
procedure for general conjunctive queries under GTGDs. This project aims to
bring the theory closer to implementations using atomic rewritings produced by
[4]. Ultimately, we provide a working prototype of a query-answering system
that works with GTGDs.

1.2 Contribution of This Work

The primary theoretical contribution of this work is the development of a con-
crete Datalog rewriting algorithm. On our way, we introduce a variant of chase
which we call shortcutting chase tree and develop some theory concerning query
satisfaction within the chase structure. We then apply the theory to derive a
Datalog rewriting, demonstrating room for further optimisations.

In addition to the theoretical work, we provide the first implementation of
the GTGD rewriting algorithm in Java, incorporating some optimisations we will
have discussed.

1.3 Outline of This Report

In Chapter 2, we review basic terminologies and results that we use throughout
the report.

In Chapter 3, we revisit tree-like chase proofs and introduce the notion of
shortcutting chase trees. We then analyse how answers to a conjunctive query
are embedded into the shortcutting chase tree, emphasising its relationship to
the connectedness of the query. At the end of the chapter, we apply our obser-
vations to derive a query-answering procedure that operates over shortcutting
chase trees.

In Chapter 4, we use the observations from Chapter 3 to plan towards a
Datalog rewriting procedure. We will see that the query answering procedure
from Chapter 3 can be used to derive a rewriting, although it is inefficient as is.
We close the chapter with optimisations of the algorithm so obtained.

We briefly review our implementation in Chapter 5. Finally, we conclude
the report with an overview and discuss some weaknesses of the algorithm to be
improved in future studies.

7

https://github.com/kory33/guarded-queries

Chapter 2

Preliminaries

This chapter introduces terminologies and notations, which we will use through-
out the report.

2.1 Formulas

We fix countably infinite collections of constants, variables and nulls. Nulls are
similar to variables but play a similar role as Skolem constants (at the beginning
of Chapter 3, we will see examples illustrating the use of nulls). A term is either
a constant, a variable or a null.

We also fix a countably infinite set of predicates. A predicate P has its asso-
ciated arity Arity(P) ∈ N≥0. An atom is a string of the form P (t1, . . . , tArity(P)),
where each ti is a term. A fact is an atom not containing a variable, and a base
fact is a fact not containing nulls. We write Terms(S), Consts(S), Vars(S) and
Nulls(S) for the sets of terms, constants, variables and nulls appearing in an
object S (such as a conjunction of atoms).

A tuple-generating dependency (TGD) is a formula of the form τ = ∀x⃗. β →
∃y⃗. η, where β and η are conjunctions of null-free atoms containing variables
from x⃗ and x⃗∪ y⃗ respectively. The conjunctions β and η are called the body and
the head of τ , respectively. The set Vars(β) ∩ Vars(η) of variables appearing in
both the body and the head of τ is called the frontier of τ .

A TGD ∀x⃗. β → ∃y⃗. η without an existential variable (i.e. y⃗ = ∅) is said to
be full. Full TGDs are also called Datalog rules. Conversely, a non-full rule is
said to be existential. A finite set of Datalog rules is called a Datalog program.

We say that a conjunction A1 ∧ . . . ∧ An of atoms is guarded if there is an
atom Ai with Vars(Ai) = Vars(A1∧ . . .∧An), and that a TGD is a guarded TGD
(GTGD) if its body β is guarded. A GTGD ∀x⃗. β → ∃y⃗. η is single-headed if
the head η only contains a single atom.

Remark 2.1. Note that a full rule ∀x⃗. β → H1 ∧ . . . ∧Hn can always be split
into n rules ∀x⃗. β → Hi for 1 ≤ i ≤ n. We will, therefore, implicitly treat all full
rules as single-headed rules.

8

Remark 2.2. We can also split a non-single-headed existential rule τ = ∀x⃗. β →
∃y⃗. H1 ∧ . . . ∧ Hn, but only if we introduce a new predicate. More precisely,
suppose that z⃗ ⊆ x⃗ is the frontier of τ , then we can turn τ into two rules

• ∀x⃗. β → ∃y⃗. I(z⃗, y⃗), and

• ∀z⃗, y⃗. I(z⃗, y⃗)→ H1 ∧ . . . ∧Hn, which is full.

In general, a set Σ of GTGDs can be turned into a set of single-headed GTGDs
if we introduce an intermediate predicate for each existential rule in Σ.

A conjunctive query is a formula of the form ∃z1, . . . , zn. A1∧ . . .∧Am, where
n ≥ 0, m ≥ 1, and each Ai is an atom. We write FV(Q) for the set of free
variables in Q. A conjunctive query is said to be Boolean if FV(Q) = ∅.

2.2 Database Instances and Homomorphisms

We now turn our attention to a representation of a relational database. A
(database) instance is a collection of facts. A base (database) instance is a
collection of base facts. We often regard a database instance as a single conjunc-
tion of facts. For example, we identify an instance {R(c1, c3), T (c2, c3, c3)} with
a conjunction R(c1, c3) ∧ T (c2, c3, c3).

We use homomorphisms to describe how an instance satisfies a conjunctive
query.

An instance homomorphism σ : D → D′ from an instance D to another
instance D′ is an “embedding” of D into D′. More precisely, σ is a mapping
σ : Nulls(D)→ Terms(D′), such that for every fact F ∈ D, σ(F) ∈ D′.

Similarly, a query homomorphism σ : Q → D from a conjunctive query
Q = ∃z⃗.

∧
j∈J Aj to an instance D is a mapping σ : Vars(Q) → Terms(D) such

that σ(Aj) ∈ D for each j ∈ J .
We say that an instance D satisfies a Boolean conjunctive query Q, written

D |= Q, if there exists a query homomorphism σ : Q → D. We also say that
the instance D together with a set Σ of TGDs entails Q, written D ∪ Σ |= Q,
if for every extension Dext of D satisfying Σ, Dext satisfies Q. Note that this
definition of query satisfaction and entailment is consistent with the ordinary
model-theoretic interpretation of |= relation.

2.3 Datalog Saturation

Consider the following problem:

Problem 2.3. Given an existential-free conjunctive query Q, an input database
D and a Datalog program P , find all substitutions (each of which is an answer
to the query) α : FV(Q)→ Consts(D) such that D ∪ P |= α(Q).

9

Several algorithms for this problem are known, and [1] compared a few classic
algorithms. One of the simplest is the Naive Evaluation (Algorithm 1). Roughly
speaking, we keep adding tuples produced by rules in P to the input database
until we reach a fix-point. We then evaluate Q, which is merely a join query, on
the populated database to obtain all answers.

Algorithm 1 Answering Datalog query using Naive Evaluation

1: procedure DatalogSaturate(Datalog program P , input database D)
2: Dcurrent ← D
3: while true do
4: Dnext ← Dcurrent

5: for each r ∈ P do
6: for each σ ∈ result of matching the body of r on Dcurrent do
7: add all head atoms of r substituted with σ to Dnext

8: end for
9: end for

10:

11: if Dnext ̸= Dcurrent then
12: Dcurrent ← Dnext

13: else
14: return Dcurrent

15: end if
16: end while
17: end procedure
18:

19: procedure AnswerDatalogQuery(P , D, ∃-free query Q)
20: return result of running the join query Q on DatalogSaturate(P,D)
21: end procedure

We call the database instance DatalogSaturate(P,D) the Datalog satu-
ration of D with P . Intuitively, a Datalog saturation results from supplementing
the input instance by adding all (but nothing other than) facts derivable from
the original instance.

For a general set Σ of GTGDs, we can compute a Datalog program, which
we call an atomic rewriting, that gives the same answers as Σ for atomic queries.
More precisely,

Definition 2.4. Let Σ be a finite set of GTGDs. We say that a Datalog program
P is an atomic rewriting of Σ if for every instance D and every fact F , D∪Σ |= F
if and only if D ∪ P |= F .

A recent work [4] implemented an algorithm called Guarded-saturation for
computing an atomic rewriting of an arbitrary GTGD set. For this report,
we fix an implementation in Guarded-saturation and call its output the atomic
rewriting ARew(Σ) of Σ.

10

2.4 Problem Formulation

Our ultimate goal is to answer the following problem.

Problem 2.5 (GTGDs-CQ Answering). Given a finite set Σ of GTGDs, a con-
junctive query Q = ∃z⃗.

∧
j∈J Aj and a base instance D, what are the answers

to Q under Σ and D, i.e. substitutions α : FV(Q) → Consts(D) such that
D ∪ Σ |= α(Q)?

It is known that a conjunctive query under GTGDs admits Datalog rewritings
[2]. These Datalog programs with a designated goal atom give the same set of
answers as the original rule-query pair when run on any base instance. More
precisely:

Definition 2.6. A Datalog rewriting of a GTGDs-CQ pair (Σ, Q) is a Data-
log program ΣDatalog together with an atomic query Qatomic with FV(Qatomic) =
FV(Q), such that for every base instance D and a substitution α : FV(Q) →
Consts(D) for Q,

D ∪ Σ |= α(Q) if and only if D ∪ ΣDatalog |= α(Qatomic).

We call Qatomic the goal atom in the Datalog rewriting.

In order to answer Theorem 2.5, it is desirable to run a Datalog rewriting of
the pair (Σ, Q) on D instead of directly verifying D∪Σ |= α(Q) for every possible
substitution α : FV(Q)→ Consts(D), since running a fixed Datalog program on
D only takes time polynomial in the size of D [7].

This project aims to derive an algorithm that produces Datalog rewritings for
arbitrary GTGDs-CQ pairs. We achieve this using the atomic rewriting produced
by the Guarded-saturation algorithm.

11

Chapter 3

Characterising Query Entailment
under GTGDs

3.1 Tree-Like Chase Proofs

In the presence of existential rules, an object known as the chase represents
a canonical completion of a database concerning some data integration rules.
Chases are constructed similarly to Datalog saturations by adding tuples pro-
duced by rules, except we need to replace existential variables with nulls, which
represent Skolem constants [8].

As with Datalog saturations, the chase of an instance D gives all possible
answers α : FV(Q)→ Consts(D) to a conjunctive query Q = ∃z⃗.

∧
j∈J Aj. That

is, we can find all answers to Q by evaluating a join query
∧

j∈J Aj on the chase
and projecting z⃗ away.

However, with recursive rules1 such as R(x, y)→ ∃z. R(y, z), the chase pro-
cedure may have to be continued indefinitely, producing an infinite chase. More-
over, as one keeps populating the database instance with tuples regardless of
whether they eventually affect query output, the chase lacks a structure with
which we can reason about query entailments.

To deal with this issue, [4] introduced the notion of tree-like chase proofs,
which essentially capture instants of ongoing chase processes. To precisely de-
scribe this, we will use the following terminology.

Definition 3.1. A chase tree is a pair of a (potentially infinite) rooted directed
tree T together with a function µ mapping each vertex v ∈ T to a set of facts
(possibly with nulls). We usually refer to the instance µ(v) as a bag of facts at v
to distinguish it from the input base instance.

We will often identify a chase tree (T, µ) with the set
⋃

v∈T µ(v) of facts in
it.

In this section, we focus on finite chase trees. The following definition incor-
porates ideas from [4] and [9].

1A TGD is recursive if a predicate appears both in the body and the head.

12

Definition 3.2. Given a set Σ of single-headed GTGDs and a base instance D,
a tree-like chase proof over Σ from D is a finite sequence of chase trees C1, . . . , Cn

such that

• C1 = (T, µ) is a chase tree with a single vertex v together with µ(v) = D.

• for each i < n, Ci+1 is obtained from Ci = (T, µ) by applying one of the
following transformation steps.

– a chase step from a vertex v ∈ T with τ = ∀x⃗. β → ∃y⃗. H and a
substitution σ mapping x⃗ to terms in µ(v), provided that σ(β) ⊆ µ(v).
The result (T ′, µ′) of this step depends on whether τ is full, i.e. if
|y⃗| = 0:

∗ If τ is full, we simply add the head atom H of τ to the instance
at v. That is, we keep T ′ = T , and set µ′(v) = µ(v)∪ σ(H) while
maintaining µ and µ′ equal on T \ {v}.

∗ If τ is existential, we create a fresh child of v, put the generated
tuple in it and inherit facts from the parent bag. Formally, we
first extend σ to a substitution σ′ that maps variables in y⃗ to
fresh nulls. We define the bag I containing inherited facts as

I = {F ∈ µ(v) | Terms(F) ⊆ Terms(σ′(H)) ∪ Consts(Σ)}.

Finally, we prepare a fresh vertex c, form T ′ by making c a child
of v, and extend µ to µ′ with µ′(c) = {σ′(H)} ∪ I.

– a propagation step from a vertex v ∈ T to an ancestor a ∈ T of
v with a fact F ∈ µ(v), provided that F ̸∈ µ(a) and Terms(F) ⊆
Terms(µ(a))∪Consts(Σ). The resulting chase tree is (T, µ′), where µ′

agrees with µ everywhere except at a, and µ′(a) = µ(a) ∪ {F}.

A tree-like chase proof over Σ from D represents a process of supplementing
D according to Σ. We can derive new tuples using a chase step, stepping off to
a child node when firing an existential rule. With a propagation step, we can
retrieve a fact derived at a descendant node to its ancestor.

Example 3.3. Suppose that Σ contains the following single-headed GTGDs,
where c1 is a constant.

τ1 = ∀x1, x2. A(x1, x2) → ∃y. B(x1, y)
τ2 = ∀x1, x2. B(x1, x2) → C(x1, c1) ∧ A(x2, c1)
τ3 = ∀x1, x2. A(x1, x2) ∧ C(x1, x2) → ∃y. D(x2, y)

If we start with an instance D = {A(c4, c1)}, we can perform a chase step with
τ1, then chase with τ2, propagate a fact C(c4, c1) to the root and finally fire τ3.
We illustrate the process in Figure 3.1.

13

τ1 τ2

τ3

A(c4, c1)

A(c4, c1) A(c4, c1)

A(c4, c1)

B(c4, n1)
B(c4, n1)

B(c4, n1)

C(c4, c1)

A(n1, c1)

C(c4, c1)

A(n1, c1)

C(c4, c1)

D(c1, n2)

A(c4, c1)

B(c4, n1) C(c4, c1)

A(n1, c1)

C(c4, c1)

Figure 3.1: A tree-like chase proof with rules in Theorem 3.3. At each stage,
elements newly added to the chase tree are highlighted in red.

Note that we only propagate or inherit facts whose terms appear in the target
node. Intuitively, such a restriction can be justified because the guardedness of
rules in Σ prohibits us from combining unrelated terms into new tuples. We
cannot hope to fire an existential rule from a node a ∈ T in a meaningfully novel
manner even if we transfer to a a fact with terms not already present in a. That
is, if we propagated a fact F from v to a and could fire a rule (τ, σ) on a using
F , we could have fired (τ, σ) on v in the first place, provided that v inherited
enough facts related to F from a2.

The restriction mentioned above makes the local structure of tree-like chase
proofs small in the following sense.

Definition 3.4. Let Σ be a set of GTGDs and K ∈ N. We say that a bag B of
facts is (K,Σ)-small when |Terms(B) \ Consts(Σ)| ≤ K.

Proposition 3.5 (Tree-width of chase proofs). Let Σ be a set of single-headed
GTGDs, (T1, µ1), . . . , (Tn, µn) a tree-like chase proof over Σ from D. Let K be
the maximum arity of predicates that appear in D∪Σ. Then for every 1 ≤ i ≤ n
and every non-root vertex v of Ti, µi(v) is (K,Σ)-small. In particular, if D is
(K,Σ)-small, all bags in (Ti, µi) are (K,Σ)-small.

Proof. By induction on i. The base case i = 1 is vacuous. We look at the rule
used to derive (Ti+1, µi+1) from (Ti, µi) and examine the bag at the modified

2In fact, a might have more facts with terms in F than v does due to propagation from
cousin nodes of v. In that case, we could ”re-derive” a cousin node v′ from a in the same way
as how we had derived v, and v′ should have as many facts related to an isomorphic copy of
F as a does.

14

node.

• If the last step was a chase step with a full rule or a propagation step, no
term set has been modified for any bag in the chase tree.

• If the last step was a chase step from a vertex v ∈ Ti with an existential
rule ∀x⃗. β → ∃y⃗. H and a substitution σ, we have added a new node c
under v. As |Terms(σ′(H))| ≤ K and the inherited bag I has Terms(I) ⊆
Terms(σ′(H)) ∪ Consts(Σ),

|Terms(µi+1(c)) \ Consts(Σ)| = |Terms({σ′(H)} ∪ I) \ Consts(Σ)|
≤ K.

When D is (K,Σ)-small, the result extends to the root node since no chase
transformation modifies the term set of the root node.

At the same time, as long as conjunctive queries are concerned, tree-like chase
proofs prove everything we can reason about the input database D.

Proposition 3.6. For any set Σ of single-headed GTGDs, an instance D and a
Boolean conjunctive query Q, there exists a tree-like chase proof C1, . . . , Cn over
Σ from D such that Cn |= Q if and only if D ∪ Σ |= Q.

Proof (sketch).
(=⇒, ”soundness” of chase proofs): Suppose that (T1, µ1), . . . , (Tn, µn) is a

tree-like chase proof over Σ from D. For each 1 ≤ i ≤ n, let Ii =
⋃

v∈Tn
µn(v)

be the instance containing all facts in (Ti, µi). The sequence I1, . . . , In is known
as a chase sequence, and [8] showed that Q follows from D if there is a chase
sequence ending with In |= Q.

(⇐=, ”completeness” of chase proofs): This direction is proven in [9, Propo-
sition 2.6.9]. The proof therein decomposes an ordinary chase sequence into
a tree-like structure, and the decomposition is performed exactly as in Theo-
rem 3.2.

3.2 Shortcutting Chase Trees

Tree-like chase proof is a powerful tool to reason about a fragment of a chase,
but unlike a full chase, they do not constitute a model of D ∪ Σ. Therefore, we
wish to construct a model that retains a tree-like structure.

Notice that during a chase proof, we only ever fire an existential rule from a
node v in the hope of either

• retrieving back a fact to v to accumulate as much facts as possible to v, or

• finding an existential witness to the query variable in the subtree of v.

We can immediately achieve the former objective by computing the Datalog
saturation of the bag at v using the atomic rewriting ARew(Σ) of Σ. This
observation motivates the following definition.

15

Definition 3.7 (Shortcutting Chase Trees). Let Σ be a finite set of single-
headed GTGDs and D an instance. We inductively define an infinite sequence
(T0, µ0), (T1, µ1), . . . of chase trees as follows:

• (T0, µ0) is a chase tree with only the root vertex r together with

µ0(r) = DatalogSaturate(ARew(Σ) ,D).

• For the inductive step, (Ti+1, µi+1) is constructed by shortcut-chasing all
leaves in the previous chase tree (Ti, µi).

More precisely, let Li be the set of leaf nodes in Ti. For each l ∈ Li, an
existential rule τ = ∀x⃗. β → ∃y⃗. H and a substitution σ mapping x⃗ into
Terms(µi(l)) such that σ(β) ⊆ µi(l), define

– σ′ as an extension of σ that maps all variables in y⃗ to fresh nulls

– the bag Bl,τ,σ of facts inherited from µi(l) through τ and σ as

Bl,τ,σ = {F ∈ µi(l) | Terms(f) ⊆ Terms(σ′(H)) ∪ Consts(Σ)}

We construct Ti+1 as an extension of Ti by adding a vertex cl,τ,σ as a child
of l for each such l ∈ Li, τ and σ. We extend µi to µi+1 by setting

µi+1(cl,τ,σ) = DatalogSaturate(ARew(Σ) , {σ′(H)} ∪Bl,τ,σ).

Finally, the shortcutting chase tree SCTree(D,Σ) of D over Σ is a chase tree
defined as the limit (

⋃∞
i=0 Ti,

⋃∞
i=0 µi) of the sequence defined above.

Example 3.8. Consider the rules in Theorem 3.3. According to an implemen-
tation in [5], the set Σ′ of the following two rules is an atomic rewriting of Σ.

τ ′1 = ∀x1, x2. B(x1, x2) → C(x1, c1) ∧ A(x2, c1)
τ ′2 = ∀x1, x2. A(x1, x2) → C(x1, c1)

A first few layers of SCTree({A(c4, c1)},Σ) is illustrated in Figure 3.2. The
chase tree is continued indefinitely by chasing with existential rules and Datalog-
saturating each layer with Σ′.

The structure of a shortcutting chase tree is very similar to that of a chase
proof.

Proposition 3.9. Let Σ be a set of single-headed GTGDs and D an instance.
Let K be the maximum arity of predicates that appear in D∪Σ. Then every bag
of facts at a non-root node of SCTree(D,Σ) is (K,Σ)-small. In particular, if D
is (K,Σ)-small, all bags in SCTree(D,Σ) are (K,Σ)-small.

Proof. By the same analysis as in the proof of Theorem 3.5.

Expectedly, SCTree(D,Σ) is a universal model for D ∪ Σ, since any finite
subtree of SCTree(D,Σ) homomorphically embeds into some chase proof.

16

A(c4, c1) C(c4, c1)

D(c1, n1)B(c4, n2) C(c4, c1)

A(n2, c1) C(n2, c1)

τ1 τ3

τ3

D(c1, n3)B(n2, n4) C(n2, c1)

A(n4, c1) C(n4, c1)

τ1

τ3τ1

v1

v2 v3

v4 v5

Figure 3.2: A shortcutting chase tree over an instance {A(c4, c1)} with rules in
Theorem 3.3. The facts highlighted in red are obtained by Datalog-saturating
the inherited bag with an atomic rewriting, and dotted boxes indicate substituted
bodies used to fire an existential rule. Notice how the subtree rooted at v1 can be
obtained as a shortcutting chase of the bag at v1, as remarked in Theorem 3.12.

Lemma 3.10. Let D be an instance and Σ a finite set of single-headed GTGDs.
Then for any finite rooted subtree (T, µ) of SCTree(D,Σ), there exists a tree-like
chase proof C1, . . . , Cn that admits an instance homomorphism σ : (T, µ)→ Cn.

Proof. By induction on the structure of (T, µ).
The base case is T = {r}, where r is the root of SCTree(D,Σ). By Theo-

rem 3.6, we can construct a chase-proof C1, . . . , Cn that aggregates all provable
base facts to the root bag.

For the inductive part, take a finite rooted subtree (T, µ) and a leaf l of T ,
and suppose that T \ {l} can be homomorphically mapped into the last chase
tree in a proof C1, . . . , Cn. Let (τ, σ) be a pair of a rule and a substitution used
to derive l.

We extend the proof C1, . . . , Cn by applying a chase step with (τ, σ) to create
a child node c ∈ Cn+1. By Theorem 3.6, we can derive all facts whose terms
appear in the bag c. We have now obtained a chase proof C1, . . . , Cn+m with c
saturated, so (T, µ) can be homomorphically mapped into Cn+m.

Theorem 3.11. For a set Σ of single-headed GTGDs, an instance D and a
Boolean conjunctive query Q = ∃z⃗.

∧
j∈J Aj, D∪Σ |= Q if and only if SCTree(D,Σ) |=

Q.

Proof.
(=⇒): Suppose D ∪ Σ |= Q. By Theorem 3.6, there exists a tree-like chase

proof (T1, µ1), . . . , (Tn, µn) of Q from D over Σ. By induction on 1 ≤ i ≤ n and by

17

the construction of SCTree(D,Σ), we can embed each (Ti, µi) into SCTree(D,Σ).
Since (Tn, µn) |= Q and (Tn, µn) embeds into SCTree(D,Σ), SCTree(D,Σ) |= Q.

(⇐=): Suppose SCTree(D,Σ) |= Q. Then there exists a homomorphism
σ : Q→ SCTree(D,Σ).

We may pick a finite rooted subtree (T, µ) of SCTree(D,Σ) such that σ re-
stricts to σ : Q → (T, µ). To do so, for each j ∈ J , let Vj ∈ SCTree(D,Σ) be a
set of vertices whose bags contain the fact σ(Aj). Choose vj ∈ Vj for each j ∈ J ,
and let Tj be the set of all ancestors of vj. Finally, let T =

⋃
j∈J Tj.

By applying Theorem 3.10 to (T, µ), there is a chase proof of Q from D under
Σ. By soundness of chase proofs (Theorem 3.6, =⇒) we are done.

Remark 3.12. A shortcutting tree chase has a corecursive structure: If we
write µ for the bag assignment function of SCTree(D,Σ), then for any vertex
v ∈ SCTree(D,Σ), the subtree Tv of all descendants (including v itself) of v can
be written as Tv = SCTree(µ(v),Σ).

3.3 Query Satisfaction in Shortcutting Chase

Trees

We now discuss how the structure of the query constrains the structure of query
homomorphisms into the shortcutting chase tree. By the end of this chapter,
we will have derived a recursive query answering procedure, whose recursive
structure will be exploited in Chapter 4 to compute a Datalog rewriting.

A key observation is that, under a certain condition, a connected set of vari-
ables produces a connected homomorphic image in SCTree(D,Σ). To make this
intuition precise, we introduce the following terminology.

Definition 3.13. Given a conjunctive query Q = ∃z⃗.
∧

j∈J Aj, we say that

• two variables z1, z2 bound in Q are Q-adjacent if some atom Aj in Q con-
tains both z1 and z2

• a set Z of variables bound in Q are Q-connected if for each pair z1, z2 ∈ Z
of variables, there is a finite sequence x1, . . . , xn of variables in Z such that

– x1 = z1 and xn = z2

– for each 1 ≤ i < n, xi and xi+1 are Q-adjacent

For a subset Z of z⃗, a Q-connected component of Z is a ⊆-maximal Q-
connected nonempty subset of Z.

Finally, Q is a connected conjunctive query if z⃗ is Q-connected.

A set Z of bound variables is Q-connected if Z is connected in the hypergraph
corresponding to the structure of Q (with Z as the vertex set and atoms in Q as
the hyperedges), as illustrated in the following example.

18

z1

z2

z3

z6

z4

z5

S(z1, z2)

S(z1, z3) R(z3, z4)

R(z2, z3)

T (z2, z6, z5)

R(z3, z5)

Figure 3.3: The hypergraph corresponding to Q in Theorem 3.14.

Example 3.14. Consider a conjunctive query

Q = ∃z1, z2, z3, z4, z5, z6. S(z1, z2) ∧ S(z1, z3) ∧R(z2, z3)

∧R(z3, z4) ∧R(z3, z5) ∧ T (z2, z6, z5).

Then {z1, z3, z4} and {z2, z3, z5} are bothQ-connected, but {z1, z2, z4} and {z4, z5}
are not. Q-connected components of {z1, z4, z6, z5} are {z1}, {z4} and {z5, z6}.
Q is a connected Boolean query.

We are ready to state the observation.

Proposition 3.15. Let SCTree(D,Σ) be a shortcutting chase tree over an in-
stance D. Then for any t ∈ Terms(SCTree(D,Σ)) \ Consts(Σ), the set Vt of
vertices in SCTree(D,Σ) that contain t forms a rooted subtree of SCTree(D,Σ).

Proof. Since t ̸∈ Consts(Σ), t appears in a node only if it is

• inherited from the parent node

• a term in D

• a null introduced at the node

Since no null is introduced at two different nodes, Vt must be a rooted subtree
of SCTree(D,Σ).

Definition 3.16. A query homomorphism σ : Q → SCTree(D,Σ) is said to be
Consts(Σ)-free if range(σ) ∩ Consts(Σ) = ∅.

Lemma 3.17 (Homomorphic image of connected variables is connected). Let
Q = ∃z⃗.

∧
j∈J Aj be a conjunctive query, σ : Q → SCTree(D,Σ) a Consts(Σ)-

free query homomorphism, and Z a nonempty, Q-connected subset of z⃗. If we
write TZ for the set of nodes in SCTree(D,Σ) whose bags contain a term in σ(Z),
then TZ is a rooted subtree of SCTree(D,Σ).

19

Proof. For each term t ∈ σ(Z), let Vt ⊆ SCTree(D,Σ) be the set of nodes in
which t appears. We wish to see that TZ =

⋃
t∈σ(Z) Vt is a rooted subtree of

SCTree(D,Σ). Since TZ is nonempty, it suffices to show the connectedness of
TZ .

So take two vertices v1, v2 ∈ TZ , and let z1, z2 ∈ Z be variables bound in Q
such that vi ∈ Vσ(zi) for i ∈ {1, 2}. As Z is Q-connected, there exists a sequence
z1 = x1, . . . , xn = z2 of variables in Z such that xi and xi+1 are Q-adjacent for
each 1 ≤ i < n.

For each i, there exists an atom A containing both xi and xi+1. As
σ : Q → SCTree(D,Σ) is a query homomorphism, there exists a node v in
SCTree(D,Σ) that contains σ(A). In particular, v contains both σ(xi) and
σ(xi+1), so Vσ(xi) ∩ Vσ(xi+1) ̸= ∅.

By Theorem 3.15, each Vσ(xi) is connected, so there is a path in SCTree(D,Σ)
that joins v1 and v2 through intersections Vσ(xi) ∩ Vσ(xi+1).

We will use Theorem 3.17 to develop a query-answering procedure. To begin
with, we define a way to split the query entailment checking problem into smaller
problems by a partial guess of the query homomorphism.

Definition 3.18. Let Q = ∃z⃗.
∧

j∈J Aj be a conjunctive query and σcommit :
Vars(Q) ⇀ T a partial map from query variables to a set T of terms. Let
BVars = dom(σcommit).

We define the committed part Commq(Q, σcommit) of Q according to σcommit

as the variable-free query

Commq(Q, σcommit) =
∧
j∈J

Vars(Aj)⊆BVars

σcommit(Aj).

For eachQ-connected component C of (z⃗\BVars), the subquery Subq(Q, σcommit, C)
of Q induced by σcommit and C is the connected Boolean conjunctive query defined
by

Subq(Q, σcommit, C) = ∃C⃗.
∧
j∈J ′

σcommit(Aj),

where
J ′ = {j ∈ J | Vars(Aj) ⊆ C ∪ BVars}.

Example 3.19. Let

Q = ∃z1, z2, z3, z4, z5, z6. S(z1, z2) ∧ S(z1, z3) ∧R(z2, z3)

∧R(z3, z4) ∧R(z3, z5) ∧ T (z2, z6, z5)

as in Theorem 3.14. Suppose that σcommit is given by

σcommit : Vars(Q) ⇀ {c1, c2, c3}
z2 7→ c1
z3 7→ c3

20

R(c1, c3)

z3 7→ c3

z1

S(z1, c1)

S(z1, c3)
z4

R(c3, z4)

z2 7→ c1

z6

z5

T (c1, z6, z5)

R(c3, z5)

z3 7→ c3

z2 7→ c1

C1

C2

C3

Figure 3.4: Decomposition of the query from Theorem 3.14 with partial map
as in Theorem 3.19.

then Commq(Q, σcommit) = R(c1, c3). The split connected components are C1 =
{z1}, C2 = {z4} and C3 = {z5, z6}, and their corresponding subqueries are

Subq(Q, σcommit, C1) = ∃z1. S(z1, c1) ∧ S(z1, c3)

Subq(Q, σcommit, C2) = ∃z4. R(c3, z4)

Subq(Q, σcommit, C3) = ∃z5, z6. R(c3, z5) ∧ T (c1, z6, z5)

The decomposition after applying σcommit is illustrated in Figure 3.4.

Intuitively, the partial map σcommit represents a partial commitment towards
constructing the whole homomorphism. Commq(Q, σcommit) is a collection of
atoms which we expect to see in (the Datalog saturation of) the input instance,
and for each C, Subq(Q, σcommit, C) is a query whose entailment tells us if σcommit

had been a good choice.
As the following lemma states, the original query is satisfied precisely when

all split queries are.

Lemma 3.20 (Base-connected query decomposition). Let Q = ∃z⃗.
∧

j∈J Aj be
a Boolean conjunctive query, D an instance and Σ a finite set of single-headed
GTGDs. Then D ∪ Σ |= Q if and only if there exists a partial map σpartial : z⃗ ⇀
Terms(D) ∪ Consts(Σ) such that

• D ∪ Σ |= Commq(Q, σpartial)

• D ∪ Σ |= Subq(Q, σpartial, C) for each Q-connected component C of
(z⃗ \ dom(σpartial)).

21

Proof. (=⇒): Suppose D ∪Σ |= Q. Then by Theorem 3.11, there exists a query
homomorphism σ : Q→ Terms(SCTree(D,Σ)). Let

B = {v ∈ z⃗ | σ(v) ∈ Terms(D) ∪ Consts(Σ)},

then (σ ↾ B) is a partial map satisfying conditions in the lemma.
(⇐=): Suppose that σpartial satisfies the two conditions, and let C1, . . . , Cn

be Q-connected components of (z⃗ \ dom(σpartial)). For each 1 ≤ i ≤ n, we
can take a query homomorphism σCi

: Subq(Q, σpartial, Ci) → SCTree(D,Σ)
by Theorem 3.11. Since all of σpartial, σC1 , . . . , σCn have disjoint domains, σ =
σpartial ∪ σC1 ∪ . . . ∪ σCn is a function σ : z⃗ → Terms(SCTree(D,Σ)).

Since every atom Aj in Q appears either in Commq(Q, σpartial) or in precisely
one Subq(Q, σpartial, Ci), σ is a query homomorphism σ : Q → SCTree(D,Σ),
and therefore D ∪ Σ |= Q.

We can easily extend Theorem 3.20 to non-Boolean conjunctive queries.

Corollary 3.21. Let Q = ∃z⃗.
∧

j∈J Aj be a conjunctive query, D an instance
and Σ a finite set of single-headed GTGDs.

Then for a substitution α : FV(Q)→ Terms(D), D∪Σ |= α(Q) if and only if
there exists an extension σpartial : Vars(Q) ⇀ Terms(D) of α satisfying conditions
as in Theorem 3.20.

In order to produce answers to the query using Theorem 3.21, we need to
decide whether or not D ∪ Σ |= Subq(Q, σpartial, C) holds. It turns out that we
can exploit the connectedness of Subq(Q, σpartial, C) and the corecursive structure
of SCTree(D,Σ) (Theorem 3.12) to check the query entailment recursively. To
make this precise, we define the notion of a successful commit point, a point at
which a connected Boolean conjunctive query can be split in a way similar to
Theorem 3.20.

Definition 3.22. LetQ be a connected Boolean conjunctive query and SCTree(D,Σ)
a shortcutting chase tree. We say that a vertex v ∈ SCTree(D,Σ) with the associ-
ated bag µ(v) of facts is a successful commit point for Q in SCTree(D,Σ) if there
exists a Consts(Σ)-free partial map σcommit : Vars(Q) ⇀ Terms(µ(v))\Consts(Σ),
which we call a commit map at v, such that

• dom(σcommit) is nonempty,

• µ(v) |= Commq(Q, σcommit), and

• for each Q-connected component C of (Vars(Q) \ dom(σcommit)), there ex-
ists a Consts(Σ)-free query homomorphism σC : Subq(Q, σcommit, C) →
SCTree(µ(v),Σ).

To witness the entailment of a connected Boolean conjunctive query (with
all query variables that get mapped to Consts(Σ) already substituted), finding
a single successful commit point in the shortcutting chase tree suffices.

22

Theorem 3.23. (Recursive BCQ Entailment) Let Q = ∃z⃗.
∧

j∈J Aj be a Boolean
conjunctive query, D an instance and Σ a finite set of single-headed GTGDs.
Then there exists a Consts(Σ)-free query homomorphism σ : Q→ SCTree(D,Σ)
if and only if there exists a successful commit point for Q in SCTree(D,Σ).

Proof. (=⇒): Suppose that σ : Q → SCTree(D,Σ) is a Consts(Σ)-free query
homomorphism. By Theorem 3.17, the set TVars(Q) of nodes in which terms in
σ(Vars(Q)) appear is a rooted tree in SCTree(D,Σ). Let r be the root of TVars(Q)

and µ(r) the bag of facts at r in SCTree(D,Σ). We aim to show that r is a
successful commit point for Q.

By Theorem 3.12, TVars(Q) = SCTree(µ(r),Σ). Since terms in σ(Vars(Q))
only appear in TVars(Q), σ is a Consts(Σ)-free query homomorphism σ : Q →
SCTree(µ(r),Σ). Let B = {v ∈ Vars(Q) | σ(v) ∈ Terms(µ(r))} be a nonempty
set of variables mapped to terms in r and define σcommit = σ ↾ B, then σcommit is
a commit map at r.

(⇐=): Suppose that v is a successful commit point with a commit map
σcommit. Let C1, . . . , Cn be Q-connected components of (Vars(Q)\dom(σcommit)).
Then for each 1 ≤ i ≤ n, there is a Consts(Σ)-free query homomorphism σCi

:
Subq(Q, σcommit, Ci) → SCTree(µ(v),Σ). If we let σ = σcommit ∪ σC1 ∪ . . . ∪
σCn , then we can check that σ : Q → SCTree(D,Σ) is a Consts(Σ)-free query
homomorphism as in the proof of Theorem 3.20.

Remark 3.24. Notice that, to decide whether a vertex v in SCTree(D,Σ) is a
successful commit point for Q with a commit map σcommit, we also need to decide
if subqueries Subq(Q, σcommit, Ci) are satisfied in the subtree SCTree(µ(v),Σ). As
we require the commit map σcommit to be a nonempty map, the number of bound
variables in each subquery Subq(Q, σcommit, Ci) is strictly less than that of Q.

Moreover, for Boolean conjunctive queries, the query entailment is unaffected
by a certain renaming of constants in the root instance. Therefore, we only need
to search for successful commit points up to renaming equivalence.

We capture the latter intuition with the following.

Definition 3.25. Let D be an instance. A Σ-preserving renaming on D is an
injective function σ : Terms(D) \Consts(Σ) ↪−→ T where T is a set of terms with
T ∩ Consts(Σ) = ∅.

Proposition 3.26. If Q is a Boolean conjunctive query and σ is Σ-preserving
renaming on an instance D, then D ∪ Σ |= Q if and only if σ(D) ∪ Σ |= Q.

Proof. If we extend σ to all of Terms(SCTree(D,Σ)) by defining

σ′(t) =

{
σ(t) if t ∈ Consts(D) \ Consts(Σ)
t otherwise

Then SCTree(σ′(D),Σ) is an isomorphic image of SCTree(D,Σ) under σ′. Now
apply Theorem 3.11.

23

Remark 3.27. In Theorem 3.26, we require that the renaming σ preserves all
constants in Σ. This is because

• if c ∈ Consts(Σ) is renamed to some other constant by σ, then a rule in Σ
that fired in SCTree(D,Σ) may no longer fire in SCTree(σ(D),Σ) thereby
invalidating the (=⇒) implication, and

• if t ∈ Terms(D) is renamed to a constant in Σ, then a rule that did not fire
in SCTree(D,Σ) may fire in SCTree(σ(D),Σ), invalidating (⇐=) direction.

Definition 3.28. We say that two instances D1,D2 are Σ-renaming-equivalent
(written D1

∼=Σ D2) if there exists a Σ-preserving renaming σ with σ(D1) = D2.
It is easy to see that ∼=Σ is an equivalence relation.

Proposition 3.29. For any shortcutting chase tree SCTree(D,Σ), there are only
finitely many ∼=Σ-equivalence classes of bags in SCTree(D,Σ).

Proof. For any non-root node v of SCTree(D,Σ), by Theorem 3.9 there are at
most K + |Consts(Σ)| terms present in the bag µ(v). Hence there are at most
|P | · 2(K+|Consts(Σ)|) facts in µ(v), where P is the set of predicates in D ∪ Σ.
In particular, the number of ∼=Σ-equivalence classes in SCTree(D,Σ) is at most

2|P |·2(K+|Consts(Σ)|)
+ 1, where the bag at the root node accounts for (+1).

We are ready to present a query-answering procedure Algorithm 2 based on
the intuition of Theorem 3.24. Note that, in EntailsConnectedBCQ, we
can scan through all equivalence classes [D]∼=Σ

of bags in SCTree(D,Σ) by a
depth-first search, since

• there are only finitely many such classes by Theorem 3.29, and

• for each such ∼=Σ-equivalence class E , there exists a path v1, . . . , vn from
the root node of SCTree(D,Σ) such that

1. none of µ(v1), . . . , µ(vn) are ∼=Σ-equivalent

2. [µ(vn)]∼=Σ
= E

because we can always shorten a path not satisfying (1) by replacing a
segment vi, . . . , vi+m such that µ(vi) ∼=Σ µ(vi+m) with just vi, and then
replacing all of vi+m+1, . . . , vn by their ∼=Σ-equivalent copies in the subtree
rooted at vi.

We will only use Algorithm 2 as an intermediate step towards producing a
rewriting. We will not go through the algorithm line by line, but we shall sketch
the proof of its correctness and termination.

Theorem 3.30. The procedure AnswerConjunctiveQuery in Algorithm 2
produces all valid answers to GTGDs-CQ Answering in finite time.

Proof (sketch). Termination is clear since

24

• all for-loops iterate over a finite set, and

• size of connected BCQ decreases on every recursive call (Theorem 3.24).

We can first prove the correctness of SatisfiedWith for all connected BCQs
by induction on the number of bound variables and recursively applying The-
orem 3.23. It is then straightforward to see, by applying Theorem 3.21, that
AnswerConjunctiveQuery produces all valid answers.

25

Algorithm 2 Basic query answering procedure

1: // decide if there exists a Consts(Σ)-free query homomorphism
2: // σ : Q→ SCTree(D,Σ) for connected BCQ Q
3: procedure EntailsConnectedBCQ(D, Σ, connected BCQ Q)
4: for each equivalence class [G]∼=Σ

of bags in SCTree(D,Σ) do
5: if IsSuccessfulCommitPoint(G, Σ, Q) then
6: return true
7: end if
8: end for
9: return false

10: end procedure
11:

12: procedure IsSuccessfulCommitPoint(D, Σ, connected BCQ Q)
13: for each nonempty σcommit : Vars(Q) ⇀ Terms(D) \ Consts(Σ) do
14: if SatisfiedWith(D, Σ, Q, σcommit) then
15: return true
16: end if
17: end for
18: return false
19: end procedure
20:

21: // computes if the query is satisfied with a partial substitution σpartial

22: procedure SatisfiedWith(D, Σ, Q, σpartial : Vars(Q) ⇀ Terms(D))
23: require dom(σpartial) ⊇ FV(Q)
24: DDsat ← DatalogSaturate(ARew(Σ) ,D)
25: baseSatisfied← DDsat |= Commq(Q, σpartial)
26: C1, . . . , Cn ← Q-connected components of Vars(Q) \ dom(σpartial)
27: allComponentsSatisfied←

∧n
i=1

28: EntailsConnectedBCQ(DDsat, Σ, Subq(Q, σpartial, Ci))
29: return baseSatisfied and allComponentsSatisfied
30: end procedure
31:

32: procedure AnswerConjunctiveQuery(D, Σ, conjunctive query Q)
33: for each substitution α : FV(Q)→ Terms(D) ∪ Consts(Σ) do
34: for each substitution σConsts(Σ) : (Vars(Q) \FV(Q)) ⇀ Consts(Σ) do
35: if SatisfiedWith(D, Σ, Q, α ∪ σConsts(Σ)) then
36: output α as an answer
37: break inner loop
38: end if
39: end for
40: end for
41: end procedure

26

Chapter 4

Deriving a Rewriting

In Chapter 3, we developed Algorithm 2 for producing all answers to a conjunc-
tive query over single-headed GTGDs.

However, because of high data complexity, the algorithm is impractical for
query-answering purposes: We have to explore a part of SCTree(D,Σ) for ev-
ery single substitution α : FV(Q) → Consts(D). So instead, we aim to use
Algorithm 2 as a stepping stone to devising a Datalog rewriting that works for
arbitrary input D.

The first important observation is that the entailment of a subquery in a
proper subtree of SCTree(D,Σ) only depends on a fraction of D.

More precisely, suppose that a connected subquery Qsub is satisfied in a sub-
tree Tc of SCTree(D,Σ) rooted at a node c of the root node r so that there
is a query homomorphism h : Qsub → Tc. Suppose that c is obtained from r
by firing an existential rule τ = ∀x⃗. β → ∃y⃗. H together with a substitution
σ : x⃗ → Terms(D). If we let D′ be a subset of D formed by extracting facts in
D that are either

• used in the substituted body σ(β), or

• inherited by c, i.e. facts whose arguments are all in σ(H),

then we can still fire τ with σ in SCTree(D′,Σ) to obtain a node c′. As c′ inherits
the same set of facts, the tree Tc and the subtree Tc′ rooted at c′ are isomorphic,
and in particular, h restricts to Qsub → Tc′ . As D′ is guarded by σ(β), D′ is
(K,Σ)-small. Ultimately, if we write

K = max
P∈Predicates(Σ∪{Q})

Arity(P) ,

we only need a (K,Σ)-small set of facts to entail a subquery in a proper subtree.
Moreover, by Theorem 3.26, we are only interested in the structure of the

(K,Σ)-small instance that is needed to satisfy a subquery. For example, suppose
that we have found out that an instance {R(c1, c2), R(c2, r1)} is sufficient to
entail a subquery ∃z. T (c2, r2, z), where only r1 and r2 are constants in Σ. We
can replace c1 and c2 with any other constants and still obtain a valid implication

27

such as R(c4, c6) ∧ R(c6, r1) → ∃z. T (c6, r2, z). By a generalisation rule, we can
deduce that ∀x1, x2. R(x1, x2) ∧R(x2, r1)→ ∃z. T (x2, r2, z) under Σ.

With these observations in mind, we adopt the following strategy for building
a rewriting.

• Start with an atomic rewriting ARew(Σ) of Σ.

• For each (not necessarily maximal) Q-connected nonempty set C of bound
variables, introduce an intensional predicate SubgoalC , which asserts that
a subquery induced by C is satisfied by some partial substitution on Q.

• For each local instance I (to be defined in Section 4.1), which represents
a (K,Σ)-small structure in the base instance, decide if I contains enough
facts to entail a subquery induced by C. If so, add a rule roughly of the
form I → SubgoalC .

• Finally, add all rules that integrate subgoals into the goal atom. These rules
essentially perform the inverse of Theorem 3.21 by gathering base facts and
subgoal atoms together to infer the existence of a query homomorphism.

In Section 4.1, we define the precise structure of local instances and what it
means for one to entail a subquery. We then briefly describe how to enumerate
instances that entail a subquery in Section 4.2, putting pieces together in Sec-
tion 4.3 to present a rewriting algorithm. Finally, we discuss in Section 4.4 some
optimisations on the naive algorithm presented in Section 4.2.

4.1 The Subquery Entailment Problem

To proceed with the strategy, we need to define a data structure that can be
input to the following problem.

Problem 4.1 (Informal). Suppose I is a certain (K,Σ)-small structure, C a
Q-connected set of bound variables and Qsub,C a subquery of Q with existentials
C. Does I contain enough facts to entail Qsub,C?

4.1.1 Local Instances

First, we formalise the “(K,Σ)-small structure”.
Since there are at most K (maximum arity of predicates in D ∪ Σ) non-

Consts(Σ)-terms in a (K,Σ)-small bag of facts, we might consider relabelling
them with numbers {1, 2, . . . , K}. However, if we completely identify bags with
∼=Σ-equivalence, we will no longer be able to recover the structure of SCTree(D,Σ).
Figure 4.1 illustrates the issue.

A trick to solve this issue is to use 2K labels, which we call local names, with
the convention that the same label in adjacent bags represents a term shared
between them, as illustrated in Figure 4.2. Formally, we work with the following
structure.

28

A(c4, c1) C(c4, c1)

D(c1, n1)B(c4, n2) C(c4, c1)

A(n2, c1) C(n2, c1)

τ1 τ3

τ3

D(c1, n3)B(n2, n4) C(n2, c1)

A(n4, c1) C(n4, c1)

τ1

τ3τ1

v1

v2 v3

v4 v5

quotient∼=Σ

A(1, c1)C(1, c1)

B(1, 2) C(1, c1)

A(2, c1) C(2, c1)

D(c1, 1)

A(1, c1)C(1, c1)

B(1, 2) C(1, c1)

A(2, c1) C(2, c1)

B(1, 2) C(1, c1)

A(2, c1) C(2, c1)

D(c1, 1)

D(c1, 1)

?

?

?

?

Figure 4.1: (Left) The shortcutting chase from Figure 3.2. (Top right) If we
identify bags with ∼=Σ by relabelling terms with numbers, we get three bags repre-
senting ∼=Σ-equivalence classes. (Bottom right) We can no longer assemble these
equivalence classes back to a chase structure since there is no way to distinguish
between the inheritance and the introduction of terms in a chased node.

Definition 4.2. A (K,Σ)-local instance is a bag I of facts such that

• for every fact F ∈ I, every term in F is either

– a constant in Σ, or

– a local name from the set {1, . . . , 2K} of fresh constants

• there are at most K local names that are active (i.e. appear) in I.

We write LNames(I) for the set of active local names in I.

Notice that, as shown in Figure 4.2, we can translate a SCTree(D,Σ) into
a tree-like structure that uses local names. By abuse of notation, we write
SCTree(I,Σ) for the tree-like structure obtained this way.

The structure SCTree(I,Σ) can be constructed in a way similar to how we
construct an ordinary shortcutting chase tree, except that when firing an exis-
tential rule, we reuse a local name that was inactive at the parent node instead
of introducing fresh nulls. For example, at v′4 in Figure 4.2, we are using a local
name 3, which is inactive at the parent node v′2, in place of the null n4. We no
longer include the local name 1 in v′4 because v′4 inherits no fact containing 1.

29

A(c4, c1) C(c4, c1)

D(c1, n1)B(c4, n2) C(c4, c1)

A(n2, c1) C(n2, c1)

τ1 τ3

τ3

D(c1, n3)B(n2, n4) C(n2, c1)

A(n4, c1) C(n4, c1)

τ1

τ3τ1

v1

v2 v3

v4 v5

relabel with

A(1, c1) C(1, c1)

D(c1, 2)B(1, 2) C(1, c1)

A(2, c1) C(2, c1)

τ1 τ3

τ3

D(c1, 3)B(2, 3) C(2, c1)

A(3, c1) C(3, c1)

τ1

τ3τ1

v′1

v′2 v′3

v′4 v′5

local names

SCTree(D,Σ) SCTree(I,Σ)

Figure 4.2: (Left) The shortcutting chase from Figure 3.2. (Right) relabelling
of the shortcutting chase tree with local names. Two equal local names in sibling
nodes (e.g. 2 in v′2 and v′3) may represent different terms, while they represent
the same term in parent-child nodes (e.g. 2 in v′2 and v′4).

We say that such local names are dropped by the chase step. If a local name n
dropped at v becomes active again in a descendant v′ of v, then n at v and v′

represent different terms.

4.1.2 Partially Substituted Subqueries

Our next task is to represent a partially substituted subquery. For a Q-connected
set C of variables, the subquery induced by Q should

• only contain atoms in Q that mention a variable from C, and

• have all variables not in C substituted with a term.

It is convenient to introduce the following notion to describe the latter condition.

Definition 4.3. For a conjunctive query Q = ∃z⃗.
∧

j∈J Aj and a Q-connected
subset C of z⃗, the Q-boundary (written ∂QC) of C is the set of (either free or
bound) variables in Q defined by

∂QC =

{
v ∈ Vars(Q) \ C

∣∣∣∣∣ ∃j ∈ J such that

Vars(Aj) ∩ C ̸= ∅ and v ∈ Vars(Aj)

}

30

Example 4.4. Let

Q = ∃z1, z2, z3, z4, z5, z6. S(z1, z2) ∧ S(z1, z3) ∧R(z2, z3)

∧R(z3, z4) ∧R(z3, z5) ∧ T (z2, z6, z5)

as in Theorem 3.14. Then ∂Q{z4} = {z3}, ∂Q{z2} = {z1, z3, z5, z6} and ∂Q{z5, z6} =
{z2, z3}. We illustrate the first example in Figure 4.3.

z1

z2

z3

z6

z4

z5

S(z1, z2)

S(z1, z3) R(z3, z4)

T (z2, z6, z5)

R(z2, z3) R(z3, z5)

Figure 4.3: For the query from Theorem 3.14, the Q-boundary ∂Q{z4} of {z4}
(red) is {z3} (blue).

During a search for a successful commit point in SCTree(I,Σ), a variable in
∂QC is mapped either

• to a constant in Consts(Σ), or

• to a local name in I.

With this observation, we are almost ready to define the notion of a partially
substituted subquery. However, before we proceed, we remark on the following
corner case regarding constants in the query.

Assume for a moment that there are no rule constants. Observe that, for a
local instance I to entail a subquery ∃y. T (1, y, c) containing a constant c, there
must be some fact in I that contains c since otherwise c is never introduced to
the shortcutting chase tree.

This remark motivates the following definition.

Definition 4.5. LetQ = ∃z⃗.
∧

j∈J Aj be a conjunctive query, C be aQ-connected
subset of variables bound in Q and I a (K,Σ)-local instance. An embedding of
constants adjacent to C into I is an injective map ι : SQ,C ↪→ LNames(I), where
SQ,C is the set of constants in the subquery, defined by

SQ,C =

{
c ∈ Consts(Q) \ Consts(Σ)

∣∣∣∣∣ ∃j ∈ J such that

Vars(Aj) ∩ C ̸= ∅ and c ∈ Consts(Aj)

}
.

Putting these concepts together, we obtain the following notion of a subquery.

31

Definition 4.6. Let Q be a conjunctive query, C be a Q-connected subset of
variables bound in Q and I a (K,Σ)-local instance. A representation of a sub-
query of Q induced by C and local to I is a triple (σConsts(Σ), σI , ι) of mappings

σConsts(Σ) : ∂QC ⇀ Consts(Σ)
σI : ∂QC ⇀ LNames(I)
ι : SQ,C ↪→ LNames(I)

such that

• {dom
(
σConsts(Σ)

)
, dom(σI)} is a partition of ∂QC, and

• ι is an embedding of constants adjacent to C into I.

Given such a triple, its local realisation at I, written LRealzQ
(
σConsts(Σ), σI , ι

)
,

is the connected Boolean conjunctive query

LRealzQ
(
σConsts(Σ), σI , ι

)
= ∃C⃗.

∧
j∈JC

(σConsts(Σ) ∪ σI ∪ ι)(Aj)

mentioning local names, where JC = {j ∈ J | Vars(Aj) ∩ C ̸= ∅}.

Example 4.7. Let

Q = ∃z1, z2, z3, z4. S(c1, z1, z4, z2) ∧ T (z1, c2, z3) ∧ T (z3, c1, z4),

where c1, c2 are constants not in Σ, C = {z1, z2} and

I = {S(1, 2, 3, 4), T (4, 2, 1), R(2, 3)}.

Then ∂QC = {z3, z4} and SQ,C = {c1, c2}. If we let

σConsts(Σ) = {z3 7→ r1}
σI = {z4 7→ 2}
ι = {c1 7→ 1, c2 7→ 3}

where r1 ∈ Consts(Σ), then

LRealzQ
(
σConsts(Σ), σI , ι

)
= ∃z1, z2. S(1, z1, 2, z2) ∧ T (z1, 3, r1).

4.1.3 Formalising the Subquery Entailment Problem

Combining notions defined in Section 4.1.1 and Section 4.1.2, we can formally
re-define the Theorem 4.1.

Definition 4.8. Let Q = ∃z⃗.
∧

j∈J Aj be a conjunctive query. A (Σ, Q)-subquery
entailment problem instance is a 5-tuple (C, I, σConsts(Σ), σI , ι) where

32

• C is a Q-connected set of variables bound in Q,

• I is a (K,Σ)-local instance, where

K = max
P∈Predicates(Σ∪{Q})

Arity(P)

, and

• (σConsts(Σ), σI , ι) is a representation of a subquery of Q induced by C and
local to I.

Problem 4.9 (Subquery Entailment Problem, formalisation of Theorem 4.1).
Given a (Σ, Q)-subquery entailment problem instance I = (C, I, σConsts(Σ), σI , ι),
does I ∪ Σ |= LRealzQ

(
σConsts(Σ), σI , ι

)
hold?

We call an instance I a subquery entailment if it is an yes instance of Theo-
rem 4.9

4.2 The Naive Subquery Entailment Enumera-

tion

We can solve Theorem 4.9 with only a minor modification to Algorithm 2, with
the basic idea being that we descend the SCTree(I,Σ) to search for a successful
commit point. The only difference is that when we fire an existential rule, we
must not drop local names that appear in the substituted query Qsubst, since
otherwise Qsubst becomes immediately unsatisfiable in the chased subtree. The
first version of our algorithm (Algorithm 3) is, therefore, a verbatim translation
of Algorithm 2 into the context of local instances.

Later in Section 4.4, we discuss optimisations of Algorithm 3. Nevertheless,
for now, we move on to the other components of the rewriting algorithm to see
how outputs from Algorithm 3 can be assembled into a Datalog rewriting.

4.3 A Rewriting Algorithm

4.3.1 From a Subquery Entailment to a Datalog Rule

Now that we can enumerate subquery entailments, we show how to turn them
into Datalog rules that derive subgoals.

Suppose that C is a Q-connected set of bound variables in Q, and let Qsub be
the (unsubstituted) subquery induced by C. The way in which Qsub is satisfied
can be fully described by how variables in ∂QC are mapped to terms. Therefore,
to represent a subquery satisfaction, we introduce the subgoal predicate as an
intensional predicate SubgoalQ,C having the arity |∂QC|.

33

Algorithm 3 Naive Subquery Entailment Enumeration

1: // decide if there exists a Consts(Σ)-free query homomorphism
2: // σ : Q→ SCTree(I,Σ) for a BCQ Q with only
3: // LNames(I) as query constants
4: procedure EntailsConnectedBCQ(I, Σ, connected BCQ Q)
5: for each local instance I ′ in SCTree(I,Σ) that can be reached

without dropping local names LNames(I) ∩ Consts(Q) do
6: if IsSuccessfulCommitPoint(I, Σ, Q) then
7: return true
8: end if
9: end for

10: return false
11: end procedure
12:

13: procedure IsSuccessfulCommitPoint(I, Σ, connected BCQ Q)
14: for each nonempty σcommit : Vars(Q) ⇀ LNames(I) do
15: if BooleanQSatisfiedWith(I, Σ, Q, σcommit) then
16: return true
17: end if
18: end for
19: return false
20: end procedure
21:

22: // computes if Boolean Q that only has LNames(I) as query constants
23: // is satisfied with a partial substitution σpartial : Vars(Q) ⇀ LNames(I)
24: procedure BCQSatisfiedWith(I, Σ, Q, σpartial)
25: IDsat ← DatalogSaturate(ARew(Σ) , I)
26: baseSatisfied← IDsat |= Commq(Q, σpartial)
27: C1, . . . , Cn ← Q-connected components of Vars(Q) \ dom(σpartial)
28: allComponentsSatisfied←

∧n
i=1

29: EntailsConnectedBCQ(IDsat, Σ, Subq(Q, σpartial, Ci))
30: return baseSatisfied and allComponentsSatisfied
31: end procedure
32:

33: procedure EnumerateSubqueryEntailments(
finite set Σ of single-headed GTGDs, conjunctive query Q)

34: for each (Σ, Q)-subquery entailment problem instance I do
35: (C, I, σConsts(Σ), σI , ι)← I
36: if EntailsConnectedBCQ(I, Σ, LRealzQ

(
σConsts(Σ), σI , ι

)
) then

37: output I
38: end if
39: end for
40: end procedure

34

For each subquery entailment I, we wish to add a Datalog rule (which we will
write SubgoalRule(I)) that has the local instance in the body and the subgoal
atom as the head. For example, suppose that the subquery in Theorem 4.7 is
entailed by the local instance I given in the example. We would then like to add
a rule

∀x2, x4. S(c1, x2, c2, x4) ∧ T (x4, x2, c1) ∧R(x2, c2)→ SubgoalQ,{z1,z2}(r1, x2)

where x2 is the variable replacing z4 in the original query.
Formally, we define SubgoalRule(I) as follows.

Definition 4.10. Let I = (C, I, σConsts(Σ), σI , ι) be a (Σ, Q)-subquery entailment
problem instance. Let S be the subgoal atom substituted with local names,
defined by

S = (σConsts(Σ) ∪ σI)
(
SubgoalQ,C

(−−→
∂QC

))
.

Let ρ be a renaming of all local names to variables and query constants,
defined by

ρ(n) =

{
ι−1(n) if n ∈ range(ι)

xn otherwise

Finally, let SubgoalRule(I) be the Datalog rule given by

SubgoalRule(I) = ρ (I → S)

with all free variables universally quantified.

Under the identification of the subgoal atom SubgoalQ,C (⃗t) with the subquery

Subq
(
Q,
{−−→
∂QC 7→ t⃗

}
, C
)
of Q, the rule SubgoalRule(I) is “sound” if and only

if I is a subquery entailment. To be formal, we claim the following.

Proposition 4.11. Let Q be a conjunctive query and I = (C, I, σConsts(Σ), σI , ι)
a (Σ, Q)-subquery entailment problem instance. Let ΦQ,C be the formula stating
the identification of subgoal facts with subquery satisfactions, given by

ΦQ,C = ∀t⃗.
(
SubgoalQ,C (⃗t)↔ Subq

(
Q,
{−−→
∂QC 7→ t⃗

}
, C
))

.

Then Σ∪{ΦQ,C} |= SubgoalRule(I) if and only if I is a subquery entailment.

Proof.
A routine calculation proves both directions.
(=⇒): Let ρ, I, and S be as defined in Theorem 4.10. Let λ be an assignment

that maps each variable xn in SubgoalRule(I) to a local name n. Then by
applying the substitution λ, we have Σ ∪ {ΦQ,C} |= ι−1(I → S). Since S does
not contain a local name,

Σ ∪ {ΦQ,C} |= ι−1(I)→ (σConsts(Σ) ∪ σI)
(
SubgoalQ,C

(−−→
∂QC

))
.

35

By using (→) of ΦQ,C , we have

Σ ∪ {ΦQ,C} |= ι−1(I)→ Subq
(
Q, σConsts(Σ) ∪ σI , C

)
.

Since none of range(ι−1) appears in Σ ∪ {ΦQ,C}, we can generalise query con-
stants on the right-hand side to universally quantified variables and immediately
instantiate them back with original local names. Therefore

Σ ∪ {ΦQ,C} |= I → ι
(
Subq

(
Q, σConsts(Σ) ∪ σI , C

))
,

and as ΦQ,C is the only formula containing SubgoalQ,C , we can remove it from
the assumption so that

Σ ∪ I |= ι
(
Subq

(
Q, σConsts(Σ) ∪ σI , C

))
= LRealzQ

(
σConsts(Σ), σI , ι

)
.

(⇐=): We can perform all steps of (=⇒) in reverse order.

4.3.2 Glueing Subgoals

As a final step in the Datalog rewriting algorithm, we need to generate rules
that combine subgoals to derive the final goal. To this end, we introduce the

goal atom GoalQ

(−−−−→
FV(Q)

)
having FV(Q) as arguments.

Recall that a subgoal atom SubgoalQ,C (⃗t) indicates that the set C of bound

variables are witnessed existentially with a partial substitution
{−−→
∂QC 7→ t⃗

}
to

the boundary of C. For a set BVars ⊇ FV(Q) of variables, which we expect to
be substituted by constants either in the base or in Σ, we define the following
rule.

Definition 4.12. For a conjunctive query Q = ∃z⃗.
∧

j∈J Aj and a set BVars ⊇
FV(Q), define the subgoal glueing rule SglGlueingRuleBVars given by

∀
−−−→
BVars.

(∧
C∈CBVars

SubgoalQ,C

(−−→
∂QC

))
∧ AtomsBVars → GoalQ

(−−−−→
FV(Q)

)
where AtomsBVars is the conjunction of atoms given by

AtomsBVars =
∧
j∈J

Vars(Aj)⊆BVars

Aj

and CBVars is the family of Q-connected components of (z⃗ \ BVars).

Example 4.13. Consider the query

Q = ∃z1, z4, z5, z6. S(z1, w2) ∧ S(z1, w3) ∧R(w2, w3)

∧R(w3, z4) ∧R(w3, z5) ∧ T (w2, z6, z5).

36

Q is similar to the query in Theorem 3.14, except except that we replaced z2 and
z3 with free variables w2 and w3. If we let BVars = {w2, w3, z5}, then

SglGlueingRuleBVars = SubgoalQ,{z1}(w2, w3) ∧ SubgoalQ,{z4}(w3)

∧ SubgoalQ,{z6}(w2, w3, z5)

∧R(w2, w3) ∧R(w3, z5)

→ GoalQ(w2, w3).

Remark 4.14. Each SglGlueingRuleBVars is “sound” (in a sense as in Theo-
rem 4.11, by identifying subgoals with subquery fulfilments and the goal atom
with query fulfilment), and also collectively complete (i.e. we can derive all
answers to Q as goal facts if we can use all glueing rules) by Theorem 3.21.

4.3.3 Putting The Pieces Together

Finally, we combine components from Section 4.2, Section 4.3.1 and Section 4.3.2.

Algorithm 4 A rewriting procedure for GTGDs-CQ pairs

1: procedure Rewrite(Single-headed GTGDs Σ, Conjunctive query Q)
2: result← ∅
3: result.addAll(ARew(Σ))
4: for each I ∈EnumerateSubqueryEntailments(Σ, Q) do
5: result.add(SubgoalRule(I))
6: end for
7: for each FV(Q) ⊆ BVars ⊆ Vars(Q) do
8: result.add(SglGlueingRuleBVars)
9: end for

10: return result
11: end procedure

Theorem 4.15. Let Σ be a finite set of single-headed GTGDs and Q a conjunc-
tive query. Then Rewrite(Σ, Q) in Algorithm 4 computes a Datalog rewriting
of (Σ, Q).

Proof. By correctness of Algorithm 3, Theorem 4.11 and Theorem 4.14.

4.4 Optimising the Subquery Entailment Enu-

meration

When rewriting a GTGDs-CQ pair (Σ, Q) with Algorithm 4, the apparent bot-
tleneck is the call EnumerateSubqueryEntailments(Σ, Q) because we need
to

37

• visit every (Σ, Q)-subquery entailment problem instance I and test if I
satisfies Theorem 4.9, and

• descend a part of SCTree(I,Σ) (where I is the local instance in I) and
recursively search for a successful commit point.

Remark 4.16. As an illustrating example, consider the query

Q = ∃z1, z2, z3. S(z1, z2) ∧R(z1, z3).

We remark on the following inefficiencies with the naive implementation Algo-
rithm 3 of EnumerateSubqueryEntailments:

1. We are testing entailment relation for multiple isomorphic instances. For
example, consider the instance

I1 = (C, I1, σConsts(Σ), σI , ι) = ({z1, z2}, {S(1, 2), T (1, 1, 2)}, ∅, {z3 7→ 1}, ∅).

If we consider another instance

I2 = ({z1, z2}, {S(3, 2), T (3, 3, 2)}, ∅, {z3 7→ 3}, ∅),

it is clear that I1 is a subquery entailment if and only if I2 is because
there is a renaming {1 7→ 3, 2 7→ 2} of local names. If we have tested the
entailment for I1, we need not repeat the process for I2.

2. Generalising (1), we are testing entailment relation for subsumed instances.
For example, let I1 as in (1), and let

I3 = ({z1, z2}, {S(1, 1), T (1, 1, 1), T (1, 3, 2), S(2, 2)}, ∅, {z3 7→ 1}, ∅).

If we already know that I1 is an entailment, then we may immediately
conclude that I3 is also an entailment: The local instance I3 of I3 is strictly
stronger than I1, by which we mean that there is a map σ = {1 7→ 1, 2 7→ 1}
from names in I1 to names in I3 such that for each F ∈ I1, σ(F) ∈ I3.

3. We seem to be computing the same entailment problem repeatedly. For
example, consider the instance I3 from (2). The local realisation of I3 is
Q′ = ∃z1, z2. S(z1, z2) ∧R(z1, 1) since z3 is mapped to 1. The call

EntailsConnectedBCQ(I3,Σ, Q
′),

may first try IsSuccessfulCommitPoint with the root instance I3.
Within IsSuccessfulCommitPoint, we might guess a commit map {z2 7→
3} and check if this is a good guess by calling

BooleanQSatisfiedWith(I3,Σ, Q
′, {z2 7→ 3}).

As a result, we will make a recursive call

EntailsConnectedBCQ(I3,Σ,∃z1.S(z1, 3) ∧R(z1, 1)).

38

But this is exactly the first call to EntailsConnectedBCQ when we
decide if

({z1}, I3, ∅, {z2 7→ 3, z3 7→ 1}, ∅)
is an entailment.

In the remainder of this chapter, we describe three optimisation techniques:
two that address the issue (3) in Section 4.4.1 and in Section 4.4.2, and the other
that partially resolves (1) in Section 4.4.3. However, we leave (2) as a problem
for future work.

4.4.1 Dynamic Programming

As observed in Theorem 4.16, the issue is that

• even though we are working with locally realised subqueries, we are essen-
tially deciding split subquery entailment instances, yet

• we are not making use of the result of past invocations.

The obvious solution is to work directly with subquery entailment instances
instead, memoise all past results in a hash map (which we call the DP table),
fill in the hash map from smaller (i.e. instances with smaller C) instances and
finally output all results at the end of EnumerateSubqueryEntailments.
We call this optimisation the dynamic programming optimisation.

To proceed, we need to define the process of “splitting” a subquery entailment
problem instance, a process which is unsurprisingly similar to Theorem 3.18.

Definition 4.17. Let Q be a conjunctive query, I = (C, I, σConsts(Σ), σI , ι) a
(Σ, Q)-subquery entailment problem instance and σcommit : C ⇀ LNames(I) a
partial map.

The committed part Commq(I, σcommit) of I according to σcommit is the variable-
free query Commq

(
LRealzQ

(
σConsts(Σ), σI , ι

)
, σcommit

)
.

For each Q-connected component C ′ of (C \ dom(σcommit)), the subinstance
Subi(I, σcommit, C

′) of I induced by σcommit and C ′ is the (Σ, Q)-subquery entail-
ment problem instance defined by

Subi(I, σcommit, C
′) = (C ′, I, σ′

Consts(Σ), σ
′
I , ι

′),

where

σ′
Consts(Σ) = σConsts(Σ) ↾ ∂QC

′,

σ′
I = (σI ∪ σcommit) ↾ ∂QC

′,

ι′ = ι ↾ SQ,C′ ,

and SQ,C′ defined as in Theorem 4.5.

39

Algorithm 5 Recursive Subquery Entailment Enumeration

1: // decides if I is a (Σ, Q)-subquery entailment
2: // we can optionally cache the answer of this function using a hash map
3: procedure IsSubqueryEntailment(I = (C, I, σConsts(Σ), σI , ι))
4: for each local instance I ′ in SCTree(I,Σ) that can be reached

without dropping local names range(σI) ∪ range(ι) do
5: if Splits((C, I ′, σConsts(Σ), σI , ι)) then
6: return true
7: end if
8: end for
9: return false

10: end procedure
11:

12: // decides if I splits into subquery entailments
13: procedure Splits(I = (C, I, σConsts(Σ), σI , ι))
14: for each nonempty σcommit : C ⇀ LNames(I) do
15: if SplitsWith(I, σcommit) then
16: return true
17: end if
18: end for
19: return false
20: end procedure
21:

22: // decides if I splits into subquery entailments
23: // with commit map σcommit : Vars(Q) ⇀ LNames(I)
24: procedure SplitsWith(I = (C, I, σConsts(Σ), σI , ι), σcommit)
25: IDsat ← DatalogSaturate(ARew(Σ) , I)
26: baseSatisfied← IDsat |= Commq(I, σcommit)
27: C1, . . . , Cn ← Q-connected components of C \ dom(σcommit)
28: allComponentsSatisfied←

∧n
i=1

29: IsSubqueryEntailment(Subi(I, σcommit, Ci))
30: return baseSatisfied and allComponentsSatisfied
31: end procedure
32:

33: procedure EnumerateSubqueryEntailments(
finite set Σ of single-headed GTGDs, conjunctive query Q)

34: for each (Σ, Q)-subquery entailment problem instance I do
35: if IsSubqueryEntailment(I) then
36: output I
37: end if
38: end for
39: end procedure

40

v1

v2

v3

v4
v′1

v′2

Figure 4.4: A state during a DFS of the chase tree. Red nodes ({v′1, v′2})
indicate unsuccessful subquery entailment instances. We had already seen v′1
before this search, so we terminated the fruitless search below v′1. Yellow nodes
are the instances whose entailment we are not yet certain. We explore the grey
node v4 only if we give up the search below v2.

Algorithm 5 is another implementation ofEnumerateSubqueryEntailments
based on Theorem 4.17. The algorithm is equivalent to Algorithm 3, but since Is-
SubqueryEntailment is a Boolean function over (Σ, Q)-subquery entailment
problem instances, we can memoise answers of IsSubqueryEntailment and
avoid recomputations.

4.4.2 DFS Optimisation

As discussed briefly at the end of Chapter 3, instead of computing the set of all
local instances I ′ satisfying the condition at line 4 of Algorithm 5, we can use a
depth-first search (DFS) to explore the space of all such local instances.

During this process of deciding whether I = (C, I, σConsts(Σ), σI , ι) is a sub-
query entailment, each instance I ′ we encounter in the DFS corresponds to a
problem instance I ′ = (C, I ′, σConsts(Σ), σI , ι). If we use the DP optimisation, we
can check if we have already seen I ′, and if so, immediately stop exploring the
chase tree. We illustrate this process in Figure 4.4.

If we find a node v that admits a splitting into subquery entailments, we mark
all ancestors of v as true, and if the exploration below a node v is unsuccessful,
we mark v false, move up and try siblings of v. We show this marking process
in Figure 4.5.

We call this efficient traversal of the chase tree the DFS optimisation. Com-
bined with the DP optimisation, we never need to compute splits twice for the
same instance.

41

v1

v2

v3

v4
v′1

v′2

v1

v2

v3

v4
v′1

v′2

v1

v2

v3

v4
v′1

v′2
v5

v1

v2

v3

v4
v′1

v′2
v5

1 2

3 4

Figure 4.5: The marking process in chase tree DFS. If we start from the state
on the top-left and find out that v3 does not admit a splitting, we mark v3
false since v3 has no children. We move up to v2, but as v2 has no unexplored
children, we mark v2 false too (top-right). We try the sibling node v4 of v2 and
descend further to v5 (bottom-left). Finally, v5 admits a splitting, so we mark
all ancestors of v5 true (bottom-right).

4.4.3 Instance Normalisation

Finally, we address the first point of Theorem 4.16 concerning isomorphic in-
stances.

Recall that we use 2K local names as the set of K names is insufficient to
maintain a tree-like structure of local instances (Figure 4.1).

However, in Algorithm 5, even with DP and DFS optimisations in place, we
only partially use the structure between local instances when we descend the
chase tree. All we require is that the local names in range(σI) ∪ range(ι) be
preserved. In particular, we do not care if a local name (not in range(σI) ∪
range(ι)) at a node v is introduced at v or is inherited from the parent of v.

This observation implies that, during the DFS, we are free to “normalise”
local instances as long as we fix the names in range(σI)∪ range(ι). Since at most
K local names are active in a local instance, we can always restrict ourselves

42

to local names from {1, . . . , K}. We call the following strategy the instance
normalisation:

• In the top-level function EnumerateSubqueryEntailments, we only
enumerate local instances over local names from {1, . . . , K}.

• Within IsSubqueryEntailment, we always re-map local names in chased
instances to the range {1, . . . , K}, provided that we fix all names in range(σI)∪
range(ι).

• Consequently, the DP table only remembers entailment relations for in-
stances over {1, . . . , K}.

Remark 4.18. Combining all optimisations so far, we obtain the following per-
formance characteristic.

Suppose for simplicity that Q only contains constants from Σ. Let sig =
Predicates(Σ ∪ {Q}), K = maxP∈sig Arity(P). Then there are K + |Consts(Σ)|
terms we use in a local instance. Suppose further that all P ∈ sig have arity K.
Then there are |sig|(K + |Consts(Σ)|)K facts that we can form. Therefore there

are 2(|sig|(K+|Consts(Σ)|)K) local instances for which we need to decide subquery
entailments. Since there are at most 2|Vars(Q)| connected variable sets, each of
which has at most (K+ |Consts(Σ)|)|Vars(Q)| different realisations, we estimate to
test at most

2(|sig|(K+|Consts(Σ)|)K) × 2|Vars(Q)| × (K + |Consts(Σ)|)|Vars(Q)|

= 2(|sig|(K+|Consts(Σ)|)K+|Vars(Q)|) × (K + |Consts(Σ)|)|Vars(Q)| (4.1)

instances for subquery entailment. Each instance is tested only once (by DP and
DFS optimisations), and each test takes time exponential to |ARew(Σ) | due to
Datalog-saturating local instances.

Overall, the algorithm produces a rewriting in time always doubly exponential
to the maximum arity.

43

Chapter 5

Implementation and Testing

We built an open-sourced prototypical rewriting library in Java, combining all
ideas from Chapter 3 and Chapter 4. On top of the core library, the system has
a command-line interface where an end-user can interact with the rewriter.

5.1 Architecture

Our implementation sits on top of two libraries: Guarded-saturation [5], which
provides implementations for computing atomic rewritings, and its dependency
pdq-common-2.0.0, which provides a foundation for expressing first-order for-
mulae.

The implementation of the rewriter closely follows Algorithm 4. For
EnumerateSubqueryEntailments, we provide three implementations based
on Algorithm 5, which respectively have (DP), (DP + normalisation) and (DP
+ normalisation + DFS) optimisations applied.

Further, to minimise the evaluation time of the output Datalog program, we
apply rule subsumptions at the end: If we obtained two rules τ1 = β1 → η1
and τ2 = β2 → η2, and there exists a homomorphism σ : β1 → β2 such that
σ(η1) ⊇ σ(η2), then we discard τ2 in favour of τ1.

We illustrate the overall architecture in Figure 5.1.

5.2 Correctness Tests

The codebase contains a naive Datalog engine, a (nested-loop) join algorithm,
output rule subsumption and many other utility components, all of which are
extensively property-based-tested with ScalaCheck [10]. In addition, the overall
rewriting system is integration-tested with JUnit 5 [11].

Since there are no other implementations for GTGDs-CQ rewriting, we could
not compare our algorithm to existing implementations on general queries. How-
ever, we can translate an “acyclic” existential query into an atomic query by
adding a few guarded rules. For instance, the query Q = ∃x, y.R(w, x) ∧ S(y, x)

44

https://github.com/kory33/guarded-queries
https://github.com/ProofDrivenQuerying/pdq/releases/tag/v2.0.0

Rewriter Guarded-Saturation

1. rewrite(Σ, Q)

Datalog Engine

2. ARew(Σ)

3. enumerate subquery

Rewriter

1. rewrite(Σ, Q)

Subsumer

2. minimize rewrite

CLI user or

result

entailments for (Σ, Q)

Subquery Entailment

Enumerator

integration test

Datalog Engine

3. run on an instance

Figure 5.1: The overall architecture of the rewriting system. (Top) The rewriter
is a composition of an atomic rewriter with an implementation of Enumerate-
SubqueryEntailments. Every dotted line indicates a call through an inter-
face. The architecture is flexible in that one can independently apply optimisa-
tions to one or more components. (Bottom) When a CLI user or an integration
test performs a rewriting, we minimise the result using subsumption.

is existential, but if we add rules

∀x, y. S(y, x)→ Goal1(x)

∀w, x. R(w, x) ∧Goal1(x)→ Goal(w)

where Goal1 and Goal are fresh, then Q and Goal(w) are equivalent queries.
With this observation, we manually translated a few acyclic queries, rewrit-

ten both the translated and the original rule sets using Guarded-saturation and
our rewriting system, and finally tested if two rewritings agreed when run on
randomly generated instances.

5.3 Example Runs

Figure 5.2 is an example of an interaction between a user and the application
where the user attempts to rewrite

Q = ∃y.R(c1, y) ∧R(y, w) ∧R(w, c3)

45

> add-rule R(x_1, c_1), P(x_1) -> EE y_1. R(c_1, y_1), R(y_1, x_1), P(y_1)
Registered rule: R(x_1,c_1) & P(x_1) -> EE y_1. R(y_1,x_1) & P(y_1) & R(c_1,y_1)
> add-rule R(c_1, x_1) -> R(x_1, c_1), P(x_1)
Registered rule: R(c_1,x_1) -> R(x_1,c_1) & P(x_1)
> rewrite dfs-normalizing EE y. R(c_1, y), R(y, w), R(w, c_3)
Rewriting query:(exists[y]R(c_1,y) & R(y,w) & R(w,c_3))
using GuardedRuleAndQueryRewriter{...}, with registered rules:
R(x_1,c_1) & P(x_1) -> EE y_1. R(y_1,x_1) & P(y_1) & R(c_1,y_1)
R(c_1,x_1) -> R(x_1,c_1) & P(x_1)

(GSat logs)

Done rewriting query in 3008940600 nanoseconds.
Minimizing the result...
of subgoal derivation rules in original output: 1895
of subgoal derivation rules in minimalExactBodyMinimizedRewriting: 22
of subgoal derivation rules in minimizedRewriting: 7
Done minimizing the result in 94796800 nanoseconds.
Rewritten query:
Goal atom: IP0_GOAL(w)
Atomic rewriting part:

R(GSat_u1,GSat_u2), R(c_1,GSat_u1), P(GSat_u1) :- IP0_NI_0(GSat_u2,GSat_u1)
R(GSat_u1,c_1), P(GSat_u1) :- R(c_1,GSat_u1)

Subgoal derivation part:
IP0_SQ0_SGL_0(x_1) :- R(x_2,x_1), R(c_1,x_2), R(x_2,c_1), P(x_2)
IP0_SQ0_SGL_0(x_0) :- R(c_1,x_0)
IP0_SQ0_GOAL(w) :- IP0_SQ0_SGL_0(w)
IP0_SQ0_SGL_0(c_1) :- R(x_1,c_1), P(x_1)
IP0_SQ0_GOAL(w) :- R(c_1,y), R(y,w)
IP0_SQ0_SGL_0(x_0) :- R(x_0,c_1), P(x_0)
IP0_GOAL(w) :- R(w,c_3), IP0_SQ0_GOAL(w)

Figure 5.2: An interaction with the command-line interface. The user uses the
algorithm with all three optimisations applied.

under rules

∀x1. R(x1, c1) ∧ P (x1)→ ∃y1. R(c1, y1) ∧R(y1, x1) ∧ P (y1),

∀x1. R(c1, x1)→ R(x1, c1) ∧ P (x1).

The experiment is performed on a Windows 11 computer with an Intel Core
i9-9900 CPU @ 3.10 GHz and 64 GB of RAM.

For comparison, with only (DP) and (DP + normalisation) optimisations
applied, rewriting the same input as in Figure 5.2 takes about 7.3 seconds and
160 seconds respectively, demonstrating the effectiveness of optimisations in Sec-
tion 4.4.

46

Chapter 6

Conclusions and Further
Discussion

With the help of atomic rewritings, we revised the theory of GTGD chases by
introducing the notion of shortcutting chase trees. Furthermore, we observed how
a query homomorphism is decomposed in a shortcutting chase tree and devised
a recursive decision procedure based on the observation. By further analysing
the structure of the chase tree, we showed that local instances can convey how
queries are satisfied. Based on this analysis, we developed a rewriting algorithm
employing the notion of subquery entailments.

We discussed issues encountered by a naive algorithm for enumerating sub-
query entailments and provided a few optimisation techniques. Finally, we im-
plemented the optimised version of the algorithm, which can handle arity-2 rules
and a few constants in the rule and the query.

6.1 Limitations and Future Work

The current implementation lacks optimisations for trimming down the space of
subquery entailment problem instances. Instead, it always explores the whole
space, whose size is doubly exponential in the maximum arity of the input signa-
ture and exponential in the number of constants and predicates (Theorem 4.18),
making it impractical to rewrite large inputs such as real-world ontologies. Even
though this matches with the theoretical lower bound of query answering proce-
dure (which is 2exptime for arbitrary arity and exptime for bounded arity [6]),
we may be able to overcome this issue in some cases by analysing the structure
of input rules. For instance, if a rule constant c only appears in heads and not
in the query, it is redundant to consider local instances containing facts with c
since no rule requires such facts.

Arguably, the most crucial optimisation is handling instance subsumption, as
discussed in Theorem 4.16: If a single atom R(1, 2) suffices to entail a subquery,
all local instances containing a fact with R no longer need to be tested for
entailment, reducing the search space by a factor of 16 = 24. We leave for future
work the method for efficiently controlling the search space.

47

Another performance consideration is, as remarked in Section 5.2, that we
can rewrite some queries into atomic queries by adding a few guarded rules.
Our system does not perform such preprocessing, nor does it reduce subquery
entailment problems to atomic queries, even when induced subqueries are acyclic.
Investigating the effectiveness of such input transformation is left for future work.

Moreover, our prototypical system spends most of its CPU time in Datalog-
saturating and chasing the local instances. We use an inefficient join algorithm
without indexes and the Naive Evaluation to saturate instances for simplicity.
One might want to incorporate more sophisticated join and saturation algorithms
and compare their performances.

Finally, as mentioned in the cited paper, the result in [2] concerning rewritabil-
ity extends to a slightly wider class of TGDs known as frontier-guarded TGDs,
where only frontier-variables have to be guarded in the body. Therefore, it is of
theoretical interest if we could extend our approach to this class of TGDs.

48

Bibliography

[1] Francois Bancilhon and Raghu Ramakrishnan. “An Amateur’s Introduc-
tion to Recursive Query Processing Strategies”. In: Proceedings of the 1986
ACM SIGMOD International Conference on Management of Data. SIG-
MOD ’86. Washington, D.C., USA: Association for Computing Machinery,
1986, pp. 16–52. isbn: 0897911911. doi: 10.1145/16894.16859. url:
https://doi.org/10.1145/16894.16859.

[2] Vince Bárány, Michael Benedikt, and Balder ten Cate. “Rewriting Guarded
Negation Queries”. In: Mathematical Foundations of Computer Science
2013. Ed. by Krishnendu Chatterjee and Jiŕı Sgall. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 98–110. isbn: 978-3-642-40313-2.

[3] C. Beeri and M. Y. Vardi. “The implication problem for data dependen-
cies”. In: Automata, Languages and Programming. Ed. by Shimon Even and
Oded Kariv. Berlin, Heidelberg: Springer Berlin Heidelberg, 1981, pp. 73–
85. isbn: 978-3-540-38745-9.

[4] M. Benedikt, M. Buron, S. Germano, K. Kappelmann, and B. Motik.
“Rewriting the infinite chase”. In: Proceedings of the VLDB Endowment
15.11 (July 2022), pp. 3045–3057. doi: 10.14778/3551793.3551851.

[5] Michael Benedikt, Maxime Buron, Stefano Germano, Kevin Kappelmann,
and Boris Motik. Rewriting the Infinite Chase. Version 1.0.0. url: https:
//github.com/KRR-Oxford/Guarded-saturation.

[6] A. Cal̀ı, G. Gottlob, and M. Kifer. “Taming the infinite chase: Query an-
swering under expressive relational constraints”. In: Journal of Artificial
Intelligence Research 48 (2013), pp. 115–174. doi: 10.1613/jair.3873.

[7] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
“Complexity and Expressive Power of Logic Programming”. In: ACM Com-
put. Surv. 33.3 (Sept. 2001), pp. 374–425. issn: 0360-0300. doi: 10.1145/
502807.502810. url: https://doi.org/10.1145/502807.502810.

[8] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa.
“Data exchange: semantics and query answering”. In: Theoretical Com-
puter Science 336.1 (2005). Database Theory, pp. 89–124. issn: 0304-3975.
doi: https://doi.org/10.1016/j.tcs.2004.10.033. url: https://
www.sciencedirect.com/science/article/pii/S030439750400725X.

49

https://doi.org/10.1145/16894.16859
https://doi.org/10.1145/16894.16859
https://doi.org/10.14778/3551793.3551851
https://github.com/KRR-Oxford/Guarded-saturation
https://github.com/KRR-Oxford/Guarded-saturation
https://doi.org/10.1613/jair.3873
https://doi.org/10.1145/502807.502810
https://doi.org/10.1145/502807.502810
https://doi.org/10.1145/502807.502810
https://doi.org/https://doi.org/10.1016/j.tcs.2004.10.033
https://www.sciencedirect.com/science/article/pii/S030439750400725X
https://www.sciencedirect.com/science/article/pii/S030439750400725X

[9] K. Kappelmann. Decision Procedures for Guarded Logics. Version 2. Nov. 9,
2019. doi: https://doi.org/10.48550/arXiv.1911.03679. arXiv:
1911.03679v2.

[10] Rickard Nilsson. ScalaCheck: Property-based testing for scala. https://
scalacheck.org/. Accessed: 2023-05-14. 2021.

[11] The JUnit Team. JUnit 5. https://junit.org/junit5/. Accessed: 2023-
05-14. 2023.

50

https://doi.org/https://doi.org/10.48550/arXiv.1911.03679
https://arxiv.org/abs/1911.03679v2
https://scalacheck.org/
https://scalacheck.org/
https://junit.org/junit5/

	Introduction
	Background
	Contribution of This Work
	Outline of This Report

	Preliminaries
	Formulas
	Database Instances and Homomorphisms
	Datalog Saturation
	Problem Formulation

	Characterising Query Entailment under GTGDs
	Tree-Like Chase Proofs
	Shortcutting Chase Trees
	Query Satisfaction in Shortcutting Chase Trees

	Deriving a Rewriting
	The Subquery Entailment Problem
	Local Instances
	Partially Substituted Subqueries
	Formalising the Subquery Entailment Problem

	The Naive Subquery Entailment Enumeration
	A Rewriting Algorithm
	From a Subquery Entailment to a Datalog Rule
	Glueing Subgoals
	Putting The Pieces Together

	Optimising the Subquery Entailment Enumeration
	Dynamic Programming
	DFS Optimisation
	Instance Normalisation

	Implementation and Testing
	Architecture
	Correctness Tests
	Example Runs

	Conclusions and Further Discussion
	Limitations and Future Work

